

Indian Journal of Modern Research and Reviews

This Journal is a member of the '**Committee on Publication Ethics**'

Online ISSN:2584-184X

Research Article

Structural, Morphological and Optical Properties of Electrochemically Synthesized $\text{Al}_2\text{O}_3/\text{ZnO}$ Nanocomposite

Wisam Taher Muslim¹, Zahraa Kadhim Abbas², Hasan R. Hamood^{3*}, Munaf M. Naji⁴

^{1,4} Department of Clinical Laboratory Science, Faculty of Pharmacy, Kufa University, Najaf, Iraq

² Department of Pharmacy Techniques, Technical Institute, Kufa, Al Furat Al Awsat Technical University, Najaf, Iraq

³ Department of Plant Protection, College of Agriculture, Kufa University, Najaf, Iraq

Corresponding Author: *Hasan R. Hamood

DOI: <https://doi.org/10.5281/zenodo.18415214>

Abstract

In the present era, nanomaterials have many uses due to their superior chemical and physical characteristics. The electrochemical deposition approach, which is quick, simple, and affordable, is one of the key techniques for creating nanocomposites ($\text{Al}_2\text{O}_3/\text{ZnO}$). Advanced methods like X-ray diffraction (XRD), field-emitted scanning electron microscopy (FESEM), microscopy using transmission electrons (TEM), ultraviolet-visible (UV-Vis), energetic dispersive x-ray (EDX), and atomic force microscopy, also called AFM, are used to analyse the nanocomposite. According to the investigation, the nanocomposite had an average crystal size of 8.4 nm, a band gap value of 3.23 eV, and a nanorod form.

Manuscript Information

- ISSN No: 2584-184X
- Received: 20-12-2025
- Accepted: 23-01-2026
- Published: 29-01-2026
- IJCRM:4(1); 2026: 221-227
- ©2026, All Rights Reserved
- Plagiarism Checked: Yes
- Peer Review Process: Yes

How to Cite this Article

Muslim W T, Abbas Z K, Hamood H R, Naji M M. Structural, morphological and optical properties of electrochemically synthesised $\text{Al}_2\text{O}_3/\text{ZnO}$ nanocomposite. Indian J Mod Res. 2026;4(1):221-227.

Access this Article Online

www.multiarticlesjournal.com

KEYWORDS: Aluminum Foil; Composite; Electrochemical Cell; Solar Cell; Zinc Foil.

1. INTRODUCTION

The nanoparticles of metal oxide are characterised by superior stability, lower toxicity than other materials, high immovability, and higher selectivity than other related organic compounds [1]. The particle size plays important role in the chemical and physical properties of materials when converted to the nano scale. These nanomaterials, due to their size particles show remarkable uses in different fields such as drug delivery, catalysis, treatment of water, semiconductor materials, sensor gadgets, and solid oxide fuels [2]. The main advantages of these materials are: -the surface properties change in that band gap that led to a change in the conductivity and chemical reactivity; - the qualities of electrochemical changes due to the influence of quantum regulation; - changes in the structure that permit the modification of structural symmetry as well as cell parameters [3]. Materials classified by their various components are called composites. One such composite includes sections and lists, which can significantly increase the number of people accessing them. These composites have a diameter greater than 100 nanometers and are called flat matrix composites [4]. A nanocomposite is an electrically conductive, tall, mechanically robust, less irritating, and bonded composite material, intended for devices, etc., and is a new type of composite material. The institutionalisation of such devices combines environmental friendliness and cohesion, with high regeneration and renewal, while maintaining the highest quality standards [5]. The sheer volume of unique microcomposites. Pure water, supercapacitors, electrically conductive structures, corrosion inhibitors, anti-static photovoltaics, photonic elements, nature, biosensors, biomaterials, and bioenergy – all are available within a few kilometres, under any conditions, and can be detonated. Nanoparticles/polyaniline (AgPani) eliminate aniline scratch residues on-site to obtain a better atom at 265°C. Well, you can use additional biosensors, or even then, this is the case with electric water heating technology [6]. The use of bio composites in the best technological additions, such as bioanalysis and basic biosensor detection, is powerful for the largest chain [7].

2. MATERIALS AND METHODS

2.1 Materials

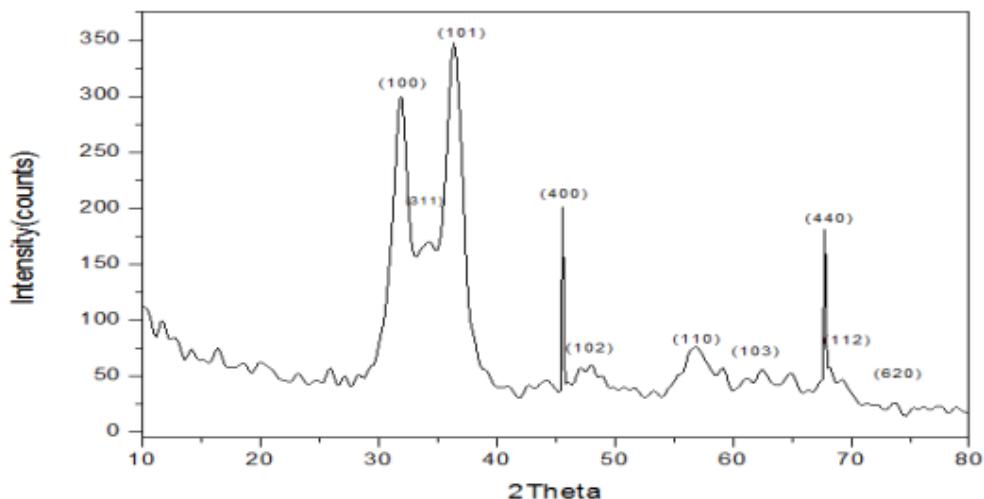
97% aluminum foil, zinc foil, and polyvinyl alcohol (Fluka, Germany). Graphite, 99% ethanol, 98% acetone, 97% polyethylene glycol, 95% potassium chloride, and 97% potassium iodide (CDH, India). 99% iodine (Thomas Baker, India).

2.2 Methods

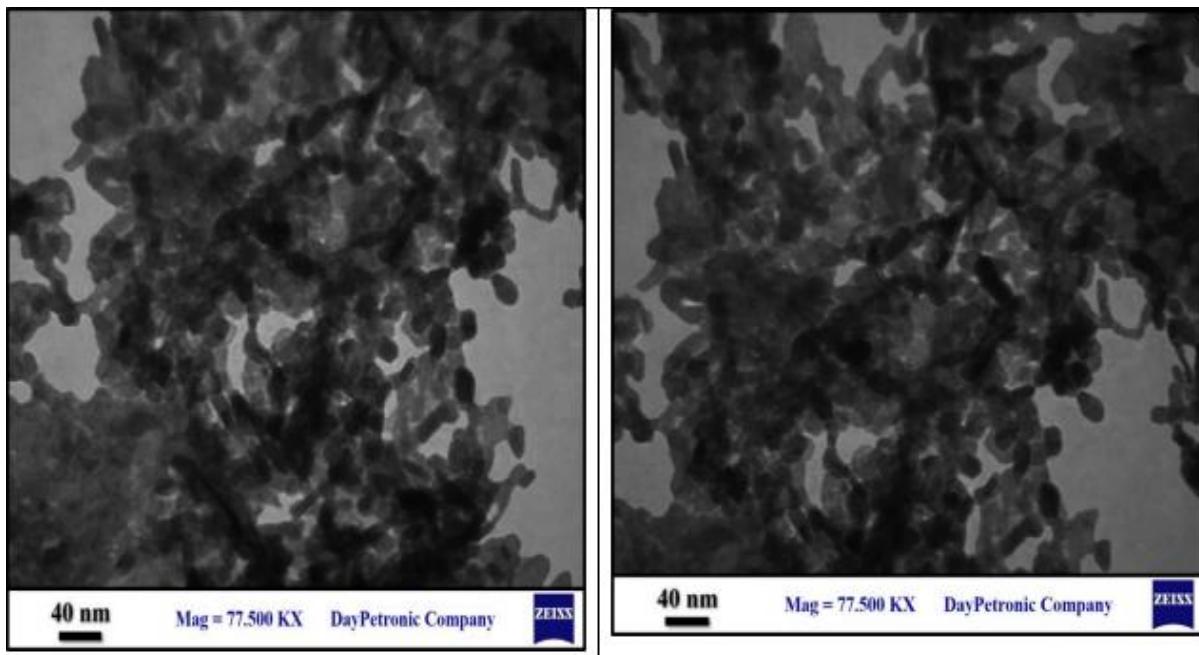
2.2.1 Preparation of $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite.

An inert electrode made of graphite and a working electrode constructed of aluminum and zinc foil were used to make the $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite using the electrochemical technique. A power supply is also utilised. Acetone and ethanol were used to wash the cathode and anode, followed by deionised water [8]. A 200 mL solution containing 5 mL of 10 g/100 mL electrolyte (KCl) and 10 mL of 10 g/100 mL stabiliser (polyvinyl alcohol (PVA) and ionised water, respectively) is poured into the electrochemical cell. Zinc foil

(0.5 cm x 4 cm) and aluminium foil (0.5 cm x 4 cm) make up the working electrode, which is placed face-to-face with a graphite electrode (2 cm x 5 cm) in the cell electrolyte [9]. At a temperature of less than 30°C, the electrolysis process was carried out in an undivided electrolytic cell for sixty minutes while stirring. The voltage ranges from 9 to 15 volts. After removing the white precipitate resulting from $\text{Al}_2\text{O}_3/\text{ZnO}$ and washing it again with ethanol and deionising water, it was transferred to a drying vessel, dried for 60 minutes at 60 °C, and then calcined for 60 minutes at 700 °C [10].


Figure 1: The $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite is prepared using an electrochemical method.

3. RESULTS AND CONVERSATIONS


3.1 $\text{Al}_2\text{O}_3/\text{ZnO}$ Nanocomposite X-Ray Diffraction Analysis.

Ringenowski diffraction of the $\text{Al}_2\text{O}_3/\text{ZnO}$ fine-tuning enhances the extreme temperatures required for optimal electrochemical reactions. The electrochemical spectrum minimises the interference pattern of $\text{Al}_2\text{O}_3/\text{ZnO}$. Ringenowski diffraction exhibits greater interference than that found in single-atom $\text{Al}_2\text{O}_3/\text{ZnO}$ diffraction, and the maximum isolating capacity is minimised to prevent interference from becoming more pronounced. Furthermore, these snapshots are very intense, as shown in Resonke 2. Some neutral snapshots show hardening at 20 (32,023°, 36,856°, 48,352°, 57,320°, 63,253° to 69,643°) direct Miller index (100), (101), (102), (110), (103) to (112) refined zinc oxide, to 35,972°, 46,860° to 74,784° standard Miller index (311), (400), (440) to (620) enhanced Al_2O_3 . The best PIC in all large diffraction, improved diffraction intensity, and enhanced. All the bikinis and vibrant Al_2O_3 are sent to an effective $\text{Al}_2\text{O}_3/\text{ZnO}$ nanocomposite, a new nuclear material. [11].

Figure 2: The $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite's X-ray diffraction pattern.

3.2 $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano Composite Analysis Using Transmission Electron Microscopy (TEM). Figure 3 displays TEM micrographs of $\text{Al}_2\text{O}_3/\text{ZnO}$ nano-composite that were

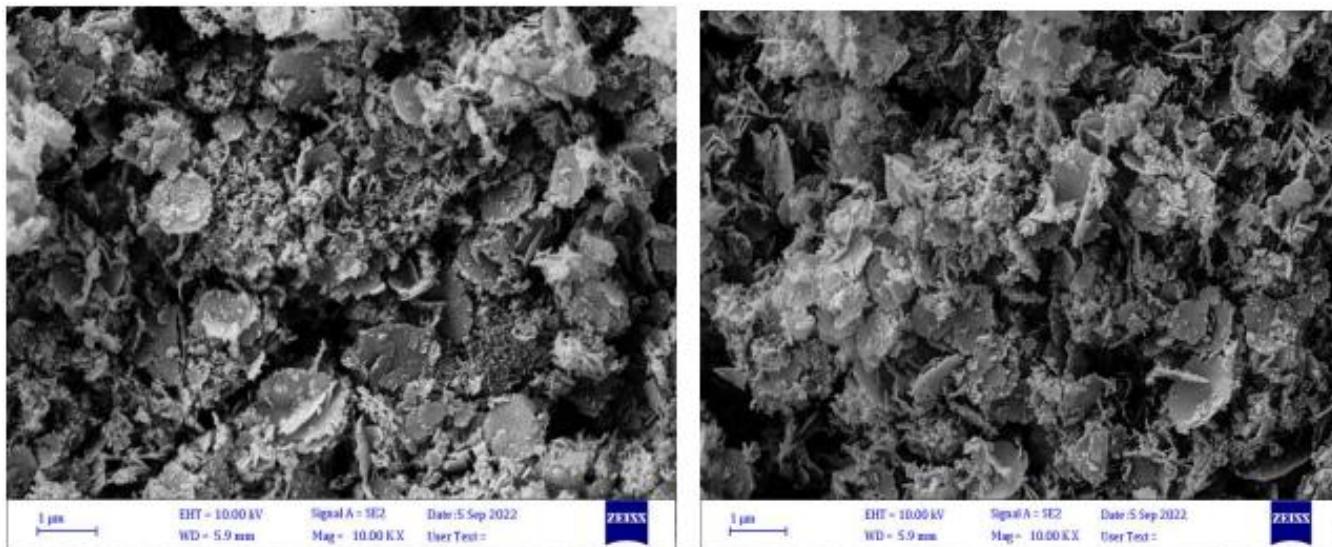

produced electrochemically at room temperature. The electrochemically produced $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite crystalline forms have a nanorod shape, according to the TEM data [12].

Figure 3: TEM images of $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite.

3.3 The $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite Field Emissions Scanning Electron Microscope (FESEM).

Field-emission scanning electron microscopy (FESEM) is used to determine the shape and structure of the prepared films. FESEM in secondary electron mode, with 100,000x magnification and an operating voltage of 10 kV, can produce high-resolution images of the sample surface. The particle arrangement is clearly visible in the FESEM image. As shown

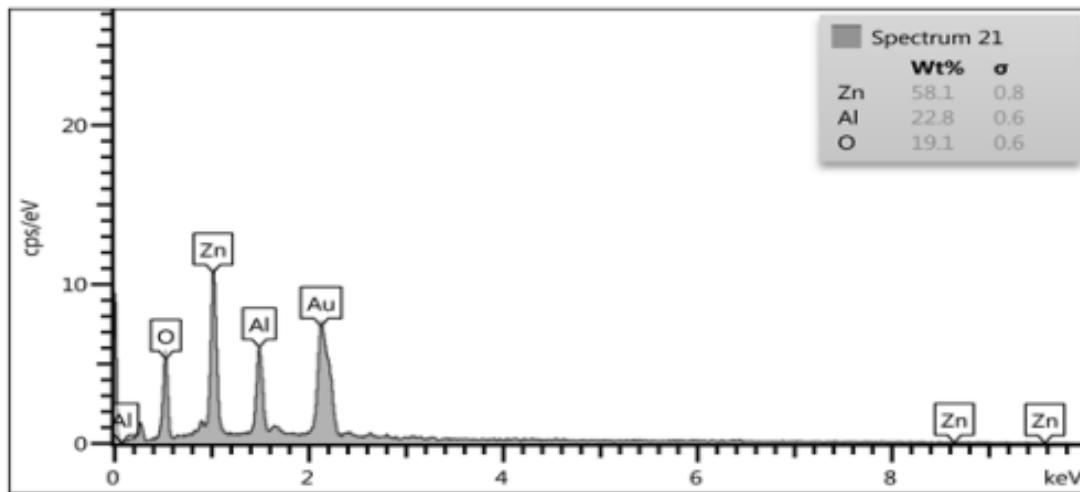

in Figure 4, the outer layer of the $\text{Al}_2\text{O}_3/\text{ZnO}$ composite is characterised by a complete and homogeneous coating of dense nanosheets, bonded together to form a three-dimensional porous structure. The Al_2O_3 nanoparticles are essential for the formation of the $\text{Al}_2\text{O}_3/\text{ZnO}$ composite, as they not only provide structural support for the ZnO nanoparticles but also prevent their agglomeration [13].

Figure 4: FESEM images of $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite.

3.4 $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite Energy Dispersive X-Ray Spectroscopy (EDX).

Energy dispersive X-ray spectroscopy (EDX) was used to assess the purity and stoichiometry of the electrochemically produced $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite. The results, which are displayed in Figure 5, demonstrate that the samples were extremely clean because only particular signals for oxygen,

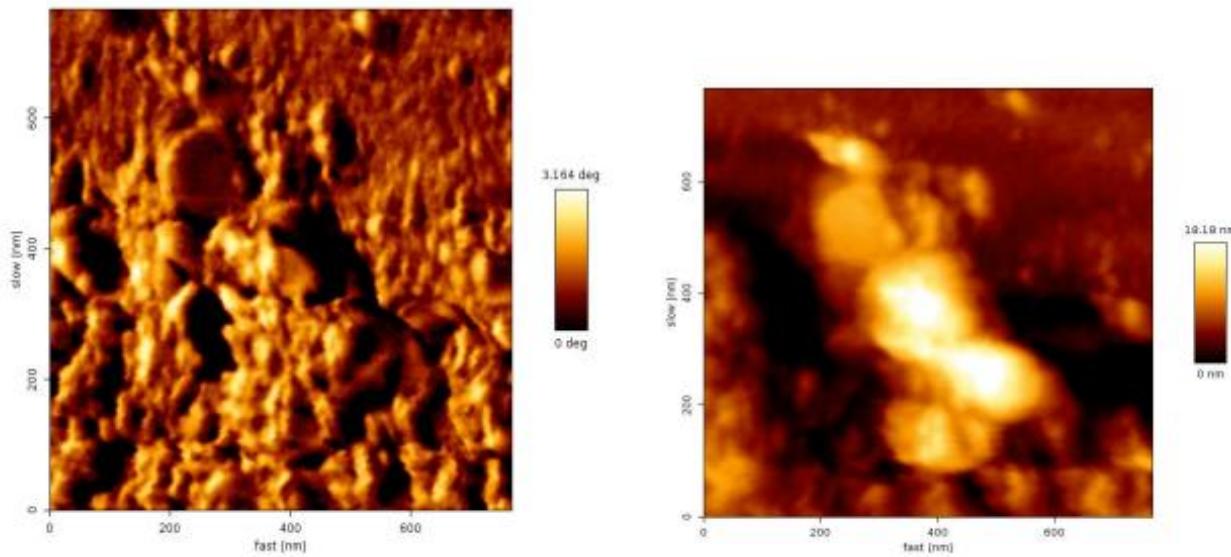

aluminium and zinc were present. As can be observed in the EDX chart for ZnO NPs, the appearance of gold in the chart is a result of gold covering the sample during testing. Zn=58.1%, Al=22.8%, and O=19.1% are the weight proportions of $\text{Al}_2\text{O}_3/\text{ZnO}$. These ratios show that the ZnO: Al_2O_3 ratio is 2:1, in conjunction with the presence of free metal deposits of zinc and aluminium that function as doping [14].

Figure 5: $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite's EDX spectrum.

3.5 Analysis of the $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite by Atomic Force Microscopy (AFM).

Topographic imaging using atomic force microscopy (AFM) is an effective method for gathering detailed information about the morphology, topography, and texture of various surfaces. Weak structures are represented by muted colours in AFM images, while strong structures are represented by bright colours due to the different orientation of the particle grains. Among the many important properties

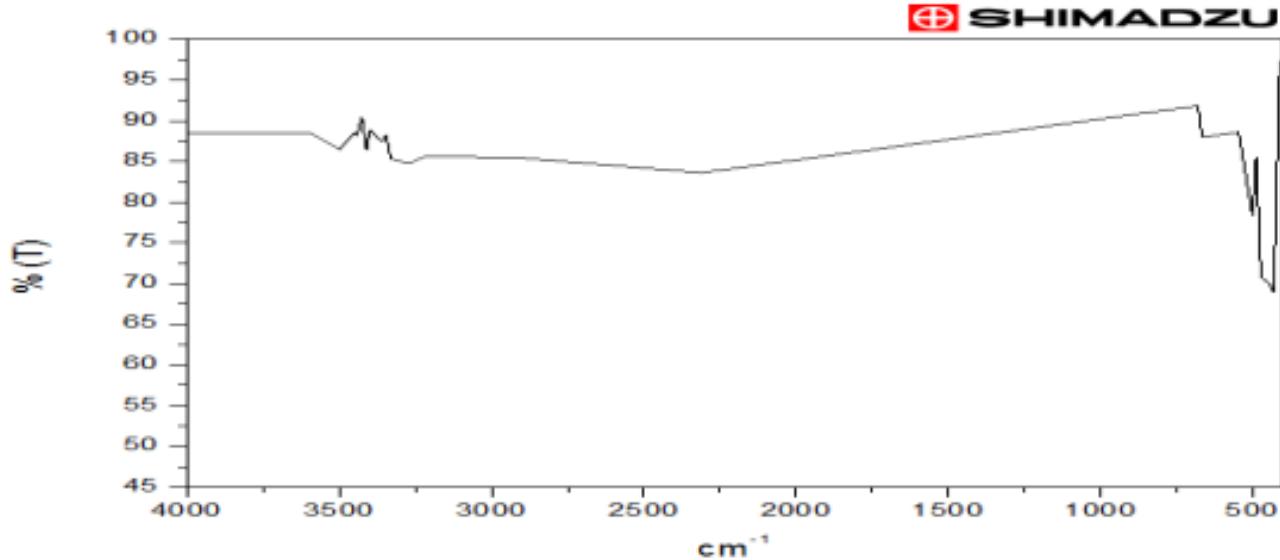

included in the comprehensive data obtained from AFM measurements are surface asymmetry, mean square root ratio, and mean surface roughness (Sa). On the other hand, AFM measurements provide excellent information about the mean diameter of nanoparticles, their size dispersion, and their surface homogeneity [15]. Figure 6 shows how an $\text{Al}_2\text{O}_3/\text{ZnO}$ nanocomposite can be used to create two-dimensional (2D) and three-dimensional (3D) images and configurations.

Figure 6: Al₂O₃/ZnO Nano composite AFM 2D and 3D pictures

3.6 Al₂O₃/ZnO Nano composite Fourier transformation infrared spectroscopy analysis (FT-IR).

FTIR spectroscopy was employed to get additional insight into the chemical relationship between Al₂O₃NPs and ZnO NPs. The Al₂O₃/ZnO FTIR spectrum is shown in Figure 7. The presence of Al-O and Zn-O bonds was shown by the typical absorption

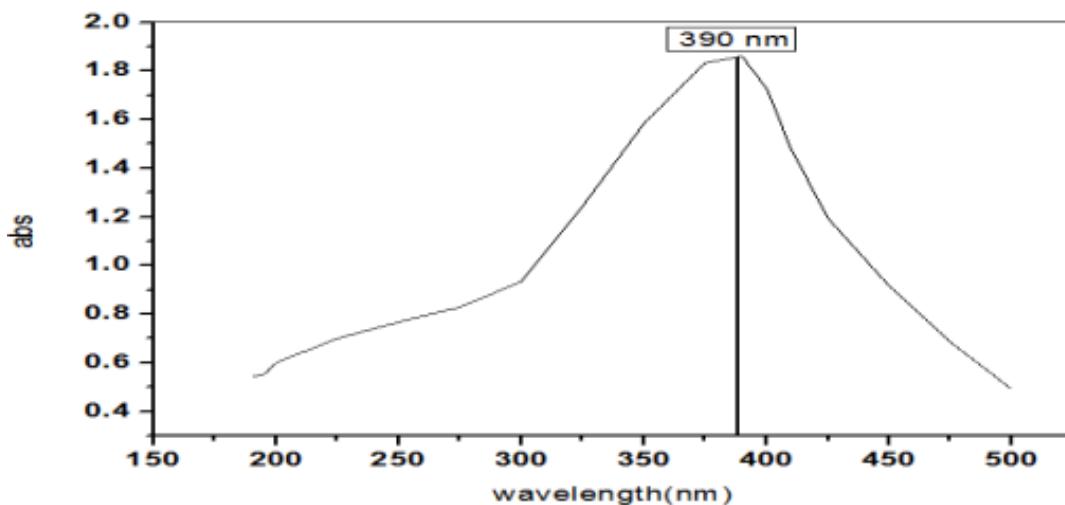
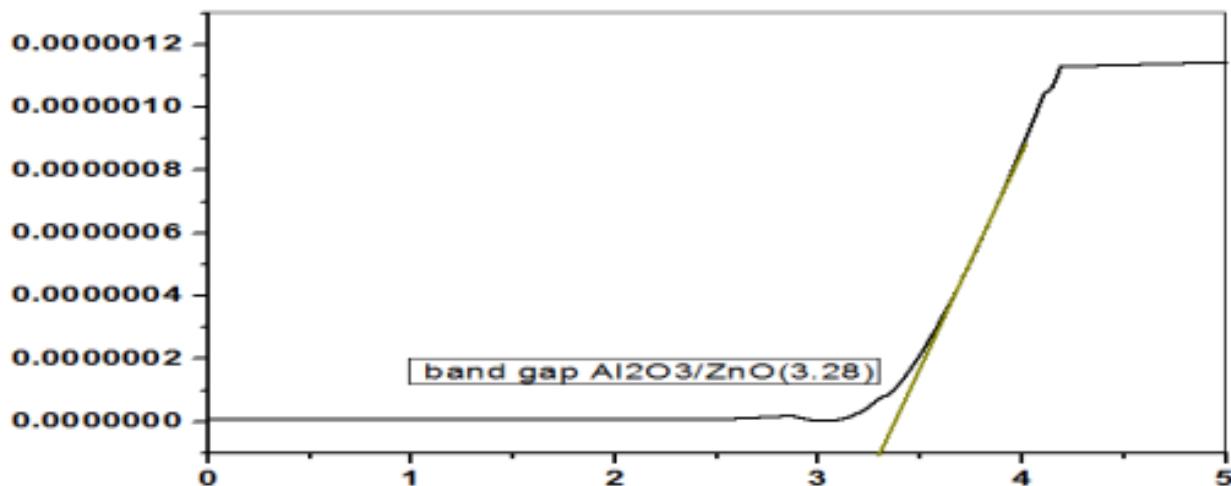

peaks of the Al₂O₃/ZnO Nano composite that were mainly visible in the FTIR spectrum. The contraction vibration from Zn-O was linked to the peak at 464 cm⁻¹, and the Al-O expansion mode was suggested by the stronger absorption at 500–750 cm⁻¹ [16].

Figure 7: Al₂O₃/ZnO Nano composite FTIR spectrum; UV-Vis analysis of Al₂O₃NPs.

3.7 UV-Visible Spectroscopy (UV-Vis Al₂O₃ and ZnO Nano Composite).


Solid state ultraviolet (UV)-visible spectroscopy was used to analyse Al₂O₃/ZnO composite thin films made on glassy slides

at temperatures below 30 C°. Figure 8 displays the generated UV-visible spectra, which seem to have a defined maximum wavelength [17].

Figure 8: $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite spectrum.

Furthermore, optical scanning is an important method for purifying crystalline and crystalline optical energy zones of non-metallic materials, indicating quality 9. A good optical zone type can be safe. The importance of basic sensitisation, equivalent to high-speed electronics from the zones, is what is called the wealth of love from the zone provision. All the necessary elements for this slip are an HF optical spectrometer.

equipped with a matching spectrometer, good operation in the 150-500 nm range. The enhanced hydration lines ($h\nu$) and $(\alpha h\nu)^2$ on the graph, in addition to the clear optical vision zones, are a strong indicator. The properties that support $\text{Al}_2\text{O}_3/\text{ZnO}$ in the field of optics at 25 slices of suitable pickup in the zone [18].

Figure 9: The optical band gap of $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composite.

4. CONCLUSION

A straightforward and inexpensive electrochemical deposition technique was used to successfully create the $\text{Al}_2\text{O}_3/\text{ZnO}$ nano-hybrid. The creation of a new composite material was verified by XRD structural characterisation, which showed peak shifting, intensity variations, and the emergence or disappearance of particular diffraction peaks. While FESEM pictures showed evenly distributed crumpled nano sheets producing a porous 3D structure, showing successful interaction

between Al_2O_3 and ZnO nanoparticles, TEM investigation revealed that the nano-composite had a nano-rod shape. Energy-dispersive X-ray spectroscopy (EDX) verified a $\text{ZnO}/\text{Al}_2\text{O}_3$ ratio of roughly 2:1 and demonstrated the exceptional purity of the produced nano composite. AFM investigation also revealed a homogeneous surface with appropriate roughness and well-distributed nanoscale features. The presence of $\text{Al}-\text{O}$ and $\text{Zn}-\text{O}$ functional groups was confirmed by FT-IR

spectroscopy, indicating effective bonding within the composite. Tauc plot analysis revealed an optical band gap of 3.23 eV, and UV-Vis measurements demonstrated a distinct optical absorption peak, indicating that the nano composite has promising optical properties appropriate for optoelectronic and photocatalytic applications. Overall, the study shows that electrochemical synthesis is an effective way to create high-quality $\text{Al}_2\text{O}_3/\text{ZnO}$ Nano composites with desired structural, morphological, and optical characteristics that make them appropriate for use in advanced electronic devices, sensors, energy storage, and catalysis.

5. Conflict of interest. The authors declare that they have no conflict of interest in this article

REFERENCES

- Anggraeni SD, Kurniawan F. Synthesis of aluminium nanoparticles using the electrochemical method. *J Phys Conf Ser.* 2020;1445(1):012013.
- Alghriany AA, Omar HEDM, Mahmoud AM, Atia MM. Assessment of the toxicity of aluminium oxide and its nanoparticles in the bone marrow and liver of male mice: Ameliorative efficacy of curcumin nanoparticles. *ACS Omega.* 2022;7(16):13841–13852.
- Chłedowska J, Wyrwa J, Rękas M, Brylewski T. Effects of aluminium oxide addition on electrical and mechanical properties of 3 mol% yttria-stabilised tetragonal zirconia electrolyte for ITSOFCs. *Materials.* 2022;15(6):2101.
- Shaislamov U, Kim H, Yang JM, Yang BL. $\text{CuO}/\text{ZnO}/\text{TiO}_2$ photocathodes for a self-sustaining photocell: Efficient solar energy conversion without external bias and under visible light. *Int J Hydrogen Energy.* 2020;45(11):6148–6158.
- Qi W, Tian Y, Lu D, Chen B. Research progress of applying infrared spectroscopy technology for the detection of toxic and harmful substances in food. *Foods.* 2022;11(7):930.
- Praseptiangga D, Zahara HL, Widjanarko PI, Joni IM, Panatarani C. Preparation and FTIR spectroscopic studies of SiO_2/ZnO nanoparticles suspension for the development of carrageenan-based bio-nanocomposite film. In: *AIP Conf Proc.* 2020;2219(1):100005.
- Janković S, Mitić M, Arsić B, Stankov-Jovanović V. The kinetic and thermodynamic studies of solid-liquid extraction of apigenin-glycosides from parsley (*Petroselinum crispum*). *Sep Sci Technol.* 2021;56(13):2253–2265.
- Al-Douri, Y. *Renewable energy: Analysis, resources, applications, management, and policy.* 1st ed. Cham: Springer; 2022.
- Micó-Vicent B, Perales Romero E, Jordán-Núñez J, Viqueira V. Halloysite and laponite hybrid pigments synthesis with copper chlorophyll. *Appl Sci.* 2021;11(12):—.
- Eid MM. Characterisation of nanoparticles by FTIR and FTIR-microscopy. In: *Handbook of Consumer Nanoproducts.* Singapore: Springer; 2022. p. 1–30.
- Roslan N, Ya'acob ME, Radzi MAM, Hashimoto Y, Jamaludin D, Chen G. Dye-sensitised solar cell (DSSC) greenhouse shading: New insights for solar radiation manipulation. *Renew Sustain Energy Rev.* 2018;92:171–186.
- Bouhamed H, Baklouti S. Synthesis and characterisation of $\text{Al}_2\text{O}_3/\text{ZnO}$ nanocomposite by pressure-less sintering. *Powder Technol.* 2014;264:278–290.
- Di S, Gong L, Zhou B. Precipitated synthesis of $\text{Al}_2\text{O}_3/\text{ZnO}$ nanorod for high-performance symmetrical supercapacitors. *Mater Chem Phys.* 2020;253:123289.
- Kashel N, Biu J, Cheng K, Nee W, Ho W, Tang H. Preparation of $\text{Al}_2\text{O}_3@\text{ZnO}$ core-shell microrod with excellent adsorption affinity for Congo red molecule. *Appl Surf Sci.* 2019;473:251–260.
- Zenati G, Soraein Z, Abdelghany M. Properties of inorganic $\text{Al}_2\text{O}_3-\text{ZnO}$ composites. *Appl Phys A.* 2021;127(2):1–6.
- Saffar A, Abbastabar Ahangar H, Barati S. The use of high concentration of zinc acetate solution for synthesis of $\text{Al}_2\text{O}_3-\text{ZnO}$ nanocomposite and its application for dye removal. *J Nano Chem Electrochem.* 2021;1(1):37–48.
- Mahdavi R, Talesh SSA. Selective degradation of mixed dye pollutant in aqueous phase in the presence of $\text{ZnO}/\text{Al}_2\text{O}_3$ as sonophotocatalysis based on central composite design. *Korean J Chem Eng.* 2021;38(6):1260–1271.
- Niu H, Zhou D, Yang X, Li X, Wang Q, Qu F. Towards three-dimensional hierarchical ZnO nanofiber@ $\text{Ni}(\text{OH})_2$ nanoflake core–shell heterostructures for high-performance asymmetric supercapacitors. *J Mater Chem A.* 2015;3(36):18413–18421.

Creative Commons License

This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. This license permits users to copy and redistribute the material in any medium or format for non-commercial purposes only, provided that appropriate credit is given to the original author(s) and the source. No modifications, adaptations, or derivative works are permitted.

About the corresponding author

Hasan R. Hammod is associated with the Department of Plant Protection, College of Agriculture, Kufa University, Najaf, Iraq. His academic interests focus on plant health, pest management, sustainable agricultural practices, and crop protection strategies aimed at improving agricultural productivity and food security.